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ABSTRACT

Introduction: Alzheimer’s Disease is defined as a progressive brain disease 
that affects memory, thinking, and behavior. It accounts for 50-80% of all 
dementia cases. Diagnosis can be challenging, particularly in the early stages 
and notably in mild cognitive impairment. The growing number and diversity 
of health-related data have led to the widespread use of machine learning 
algorithms in the early detection of Alzheimer’s Disease. This study focuses 
on developing an Artificial Intelligence-based clinical decision support system 
that classifies individuals as individuals with Alzheimer’s Disease, Mild Cognitive 
Impairment, or healthy individuals. 

Materials and Method: The dataset used in the study was obtained from 
the Brain Aging and Dementia Unit of the Geriatrics Department. All patients 
aged between 45 and 96 years and followed up in the clinic were examined. 
Classification was performed using the Logistic Regression, Naive Bayes, 
K-Nearest Neighbor, Artificial Neural Networks, Support Vector Machines, 
Decision Trees, and ensemble methods. 

Results: The CatBoost algorithm outperformed the other models in terms 
of accuracy. Ensemble learning methods outperformed traditional methods 
for 176 samples in the Alzheimer class. Random Forest method exhibited the 
highest precision for Mild Cognitive Impairment classification. 

Conclusion: Machine learning techniques according to the purpose of the 
study can serve experts as a low-cost and non-invasive diagnostic tool. The 
clinical decision support system developed in this study has been designed as 
a tool to assist the clinicians. 

Keywords: Machine Learning; Alzheimer Disease; Clinical Decision Support 
Systems.
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INTRODUCTION
Machine learning (ML) is a subset of Artificial 
Intelligence (AI) that integrates concepts from 
several disciplines, including computer science, 
statistics, and optimization, and fundamentally 
investigates tools and techniques for pattern 
recognition in data. Essentially, almost all ML 
problems can be formulated as optimization 
problems concerning a dataset. In such problems, 
the goal is to find a model that best describes the 
data. This explains the concept of “learning” in ML 
terminology (1). 

Implementing developments in AI technologies 
at every stage of healthcare services offers 
convenience in early diagnosis, treatments, and 
follow-up of diseases. Dementia, a progressive brain 
disease, manifests with memory loss and diminishes 
cognitive abilities, disrupting daily functioning. 
With the growing elderly population, dementia has 
become more common worldwide and emerged as 
a global public health concern. Alzheimer’s Disease 
(AD), which constitutes a large proportion of the 
recent progressive diseases, is a clinical syndrome 
that increases in prevalence with age, progresses 
with impairment in multiple cognitive domains, and 
eventually affects daily life.  

According to statistics published by the Turkish 
Statistical Institute (2024), the proportion of the 
elderly population in the total population increased 
from 8.8% in 2018 to 10.2% in 2023. According to 
population projections, the proportion of elderly 
population is expected to become 12.9% in 2030, 
16.3% in 2040, 22.6% in 2060 and 25.6% in 2080 
(2). According to World Health Organization (2023) 
estimates, the number of patients with dementia, 
currently over 55 million, will reach 75 million by 
2030 and 132 million by 2050. Studies show that 
“a new diagnosis of dementia is made every three 
seconds” 60-80% of which are Alzheimer’s patients 
(3). In 2024, another study found that an estimated 
6.9 million Americans aged 65 and older have AD 
and it could rise to 13.8 million by 2060 unless 

medical breakthroughs are developed to prevent 
or treat the disease (4).  

A comprehensive approach to diagnosis entails 
the utilization of a multifaceted array of assessment 
techniques, including clinical, biochemical, and 
cognitive evaluation and brain imaging methods, 
which are inherently time-consuming and demand 
utmost professionalism (5). Nevertheless, for the 
reasons previously outlined, the present clinical 
status of older adults may result in relatively subtle 
cognitive symptoms, with cognitive problems 
being overlooked or associated with existing 
noncognitive complaints. Conversely, in certain 
cases, findings such as simple forgetfulness 
may be interpreted in a manner that favors AD 
due to the age of the patients, which may result 
in overdiagnosis and overtreatment (6). These 
handicaps can be eliminated and the effect of 
personal factors on the diagnosis or exclusion of AD 
can be minimized with the potential of current AI 
technologies to provide guidance and stimulation 
to healthcare professionals working under heavy 
workload. Furthermore, AI technologies may be 
invaluable for physicians regarding the dementia 
syndromes, which are highly prevalent in older 
adults. In such cases, clinical evaluation remains 
essential, as biomarkers may be insufficient or 
unavailable for early diagnosis. In recent years, the 
increase in the number and diversity of health data 
has facilitated the use of several techniques for 
analyzing large-scale data for early AD diagnosis. 
Thus, cognitive status of older adults can be 
accurately classified as cognitively healthy, mild 
cognitive impairment (MCI), or AD based on a 
set of ML-based classification techniques (7). 
Most ML studies in AD diagnosis have focused on 
neuroimaging data, particularly MRI or PET scans. 
However, access to imaging tools may be limited 
in many clinical settings due to cost, infrastructure, 
or patient-specific contraindications. Therefore, 
there is a growing need for reliable diagnostic 
approaches using easily obtainable, non-
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imaging data. This study addresses this gap by 
integrating neuropsychological assessments, 
laboratory findings, demographic variables and 
comprehensive geriatric assessment to classify AD 
and distinguish it from MCI and healthy aging. This 
study aimed to classify older adults with AD, MCI, 
or cognitively healthy based on risk factors and 
clinical features determined using classification 
methods. 

MATERIALS AND METHOD
Dataset

The dataset used in the study was obtained 
retrospectively from the Dokuz Eylül University 
Hospital, Department of Geriatrics, Unit for 
Brain Aging and Dementia (Approval of Non-
Interventional Research Ethics Committee). Within 
the scope of the study, the file records of all 
patients aged between 45 and 96 years who were 
followed up in the Geriatrics Clinic of the Geriatrics 
Department at Dokuz Eylül University Hospital 
were examined. The demographic data, chronic 
diseases, dementia diagnosis, laboratory data, and 
detailed geriatric assessment parameters of the 
patients included in the study were recorded. In 
other words, the independent variables included 
age, gender, educational status, smoking status, 
comorbidities, detailed geriatric assessment tests 
(cognition, emotion, activities of daily living) and 
laboratory data whereas the dependent variables 
comprised the presence of AD, MCI and healthy 
controls.

Considering an average of 1000 new case records 
per year applying to Outpatient Clinic of the Dokuz 
Eylül University Faculty of Medicine, Department 
of Geriatrics, and given that the prevalence of 
cognitive impairment in patients over 60 years of 
age with subjective memory complaints was 26% 
according to the study conducted by (8), it was 
decided to include at least 228 patients in the study 
with 5% acceptable error rate and 95% confidence 

level. The initial dataset comprises 176 AD cases, 
73 MCI cases, and 351 healthy cases, totaling 600 
cases. Table 1 presents the dataset.

Validated and commonly used instruments 
including the MMSE and CDR mostly formed 
cognitive assessment. Usually applied in both 
clinical and research environments, the MMSE is a 
quick 30-point questionnaire extensively validated 
for identifying cognitive impairment. Conversely, 
well-known in staging AD, the CDR offers a 
thorough rating of dementia severity by means 
of semi-structured interviews with both patients 
and carers. Strong psychometric qualities, simple 
administration, and regular usage in geriatric and 
dementia-related studies led to the selection of 
these tools. 

As illustrated in Table 1, the dataset did not 
include imaging data and was ethically approved 
for the use of only clinical, demographic, 
neuropsychological and comprehensive geriatric 
assessment features. The phases of Cross-Industry 
Standard Process Model for Data Mining (CRISP-
DM) (9) were followed and applied to the data in 
Table 1.

Data Preprocessing

In the data preprocessing phase, the “File 
Number” feature, which would not be used in 
the analyses, was first removed from the dataset. 
The “Label Encoding” approach was utilized in 
numerical representation of categorical features. 
The relevant library was imported as a Python 
module. Consequently, the categorical features in 
the dataset as “present” and “absent”, were coded 
as 0 for “present” and 1 for “absent”. 

Concurrently, the target variable (class) 
“DIAGNOSIS” was recoded as 0 for AD, 1 for 
MCI, and 2 for healthy subjects. Regarding the 
“Gender” feature, no coding was made since it was 
already expressed with numerical representations 
in the dataset. Accordingly, the “Gender” feature 
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Table 1. Dataset with Descriptions

Feature Description

File Number Archive number

Age Patient age

Gender Gender of the patient

Education (year) Years of education

Smoking Smoking status

Family History Whether there is a family history of dementia

COMORBIDITIES
Hypert Hypertension status

DMM Diabetes status (as of patient’s visit)

CAD Whether the patient has coronary artery disease

Depression Whether the patient has depression

CHF Heart failure (Congestive Heart Failure)

PAD Peripheral arterial disease (vascular disease) status

LAB TESTS
VITB12 Vitamin B

VITD Vitamin D

TSH Thyroid hormone

FOLAT Folic acid

COMPREHENSIVE GERIATRIC ASSESSMENT
NEUROCOGNITIVE TESTS
MMSE-MOCA Mini Mental State Examination/Montreal Cognitive Assessment Scores

Attention-AttMOCA Saying words carefully

Orientation (time) Score when asked for time

Language Identification

Memory-Recall Remembering words after a certain period of time

Visuospatial Visual skills

Orientation (place) Score when asked about location (where are you now?)

Reg-Naming Repeating spoken words

Clock Drawing Test Clock drawing test score

CDR Dementia Stages -Clinical Dementia Rating Scale

YGDS The Yesavage Geriatric Depression Scale

CORNELL Depression in patients with dementia

ACTIVITIES OF DAILY LIVING (ADL)
BASIC (BARTEL) Activities of Daily Living Scale

INSTRUMENTAL (LAWTON-BRODY) Instrumental Activities of Daily Living Scale

DIAGNOSIS Diagnosis feature-consists of three classes (0: AD, 1: MCI, 2: healthy controls)
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was included in the dataset as 0 for “female” and 
1 for “male”. There were outlier observations in 
Vitamin B, Vitamin D, TSH, and Folic Acid values. 
At this point, the strategy to follow regarding 
outliers was decided upon. Outliers were included 
in the dataset to minimize data loss; however, 
the possibility that models working with outliers 
would provide better performance results for this 
dataset was also considered. Missing values were 
imputed using the “missingno” library, one of the 
Python libraries. This library was adopted because 
it provided information about the columns in a 
dataset containing missing data and enabled 
visualization of the general model of missing 
data practically. The MinMaxScaler module 
from the Scikit-learn library was employed in the 
normalization process due to the varying ranges of 
the dataset’s features.

Modelling
Some models that are suitable for the classification 
problem were utilized in the modeling phase. In this 
context, the preprocessed dataset was analyzed 
using ML algorithms. The 5-fold cross-validation 
method was administered during the analyses. 
In 5-fold cross-validation, the entire dataset was 
systematically partitioned into five subsets to be 
used for training and testing. 

Following the preprocessing steps previously 
outlined and the implementation of 5-fold 
cross-validation, the following ML models were 
employed. 

• Logistic Regression (LR): A regression meth-
od utilized to predict two or multiple de-
pendent variables (10). 

• Multinomial LR: LR outputs two classes, 
whereas multinomial LR accepts multiple 
data classes.

• Naïve Bayes (NB): This method can estimate 
the probabilities of class membership, specif-
ically the likelihood that a specific sample is 

associated with a certain class. The Bayesian 
classifier is built upon Bayes’ theorem (11). 

• K-Nearest Neighbor (KNN): The KNN ap-
proach classifies new unlabeled data by 
identifying the classes of its neighboring data 
points.

• Artificial Neural Networks (NN): Computa-
tional systems designed to autonomously 
simulate the functions of the human brain, 
including the derivation, creation, and dis-
covery of new information through self-learn-
ing. The network is trained with suitable data 
to enable generalization. This generalization 
identifies output sets that may correlate to 
similar events (12). 

• Support Vector Machine (SVM): This meth-
od delineates margins between classes. The 
margins seek to optimize the separation be-
tween classes, hence reducing classification 
error (13). SVMs aim to identify the separat-
ing hyperplane that maximizes the margin 
between the classes to be categorized (14).

• Decision Trees (DTs): The primary objective is 
to derive significant insights from extensive 
datasets through applying decision rules.

• Random Forest (RF): The RF algorithm (15) is 
an ensemble learning method that integrates 
several classifiers to enhance model perfor-
mance.  The RF approach was developed to 
address the issues of prolonged model per-
formance resulting from the complexities as-
sociated with overfitting or memorizing when 
the number of observations in decision trees 
is substantial.

• XGBoost: The XGBoost algorithm is based 
on the “boosting” approach of ensemble 
learning techniques. Boosting implies that a 
high-performing learner can be constructed 
by combining ensembles with poor-perform-
ing learners, each of which surpasses the oth-
ers solely by chance (16). 



2025; 28(2):137−149

142

• LightGBM: The primary distinction between 
LightGBM and conventional decision tree 
algorithms is that the tree is expanded leaf-
wise rather than evaluating all preceding 
leaves for each new leaf.

• CatBoost: CatBoost (17) is a combination of 
the terms “Category” and “Boosting”. It is a 
more sophisticated variant of gradient boost-
ing-based decision trees that can effectively 
handle categorical variables within a dataset.

• ChefBoost: ChefBoost (18) is a basic decision 
tree framework for Python that supports cat-
egorical features. This method clearly illus-
trates the decisions taken by the tree to reach 
a specific prediction and supports Explaina-
ble Artificial Intelligence (XAI).

Ensemble methods were subjected to 
both manual and automated hyperparameter 
optimization strategies to guarantee best 
model performance. GridSearchCV and 
RandomizedSearchCV were used to manually tune 
combinations of important parameters including 
learning_rate, max_depth, n_estimators. Apart 
from manual tuning, AutoML-based systems—
specifically Optuna, Hyperopt, and TPOT—
were employed to quickly investigate a larger 
hyperparameter area. These techniques find high-
performing configurations using sophisticated 
search techniques including genetic programming 
and Bayesian optimization.

Clinical Decision Support Systems Prototype 
(Deployment)

There are different and various risk assessment 
methods for AD. Currently, data-driven/data-
informed “Clinical Decision Support Systems 
(CDSS)” automate these assessments and assist 
clinicians in their decision-making processes. In the 
most general sense, CDSS are computer systems to 
assist the clinician in patient-related decisions such 
as diagnosis and treatment (19). CDSS is also defined 

as “software designed to directly assist the clinical 
knowledge base with patient-specific assessments 
or recommendations, presented to the clinician 
or patient to make a decision (20). These systems, 
which were previously designed as rule-based, are 
currently handled within a ML-based approach 
thanks to the increase in health data. Therefore, 
systems trained from existing data and offer decision 
support accordingly can detect undiscovered 
patterns in the diagnosis of a disease. In the case of 
AD, a ML-based decision support system prototype 
has been presented within the scope of the study 
using the data described in Table 1.

The prototype for the CDSS was developed 
using Flask, a microframework designed in the 
Python programming language. Initially, the 
CatBoost model, which had been previously trained 
and achieved the highest score (refer to Results for 
details), was integrated into the system using the 
Flask structure. The model was saved as predMed.
pkl, and the test data was evaluated on the Web 
utilizing Flask technology. For this purpose, an 
interface was developed, and the trained model 
was activated by clicking the “Analyze Cognitive 
Status” button after inputting the value of each 
feature in the dataset into the system. 

Figure 1 presents a sample data entry. As 
previously stated, the system defines 0 for “present” 
and 1 for “absent” values.

At this stage, validation procedures were also 
conducted. The objective was to verify whether the 
outcomes from the expert physician aligned with 
those generated by the developed prototype. For 
instance, experiments were conducted on a patient 
diagnosed with AD by a specialist physician, and it 
was observed that the same result was supported 
by the system.

Although a formal usability study did not test 
the CDSS interface with end users, a small-scale 
consistency check was carried out to compare the 
system’s output with the decisions made by clinical 
experts. In certain cases, this first step helped the 
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model match expert judgment. As shown in Figure 
1, the user interface allows input of patient data 
and displays the predicted cognitive class. In order 
to improve the system’s clinical integration, future 
research might concentrate on thorough usability 
assessments conducted with medical experts.

RESULTS
This part presents the findings and interpretations 
derived from the application of several ML methods 
outlined in the “Modeling” section to the dataset. 
In overall accuracy, CatBoost algorithm (with 
hyperparameter optimization) demonstrated the 
highest performance (87.5%). 

This was particularly advantageous in health 
datasets where domain knowledge might be scarce 
and hyperparameter optimization may provide 
challenges. In addition, precision, recall (TPR/
sensitivity), and F1-Score were presented for each 
class specifically.

Table 2 illustrates the performance metrics 
for the AD classification. It can be asserted that 
ensemble learning methods outperform traditional 
methods for 176 samples in the AD class. Upon 
detailed analysis of Table 2, the XGBoost (fine-
tuned) and CatBoost approaches were observed 
to exhibit the maximum recall. In the context of 
AD classification, recall quantifies a classification 
model’s or diagnostic test’s capacity to correctly 

Figure 1. User Interface of the Prototype Clinical Decision Support System
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Table 2. Precision, Recall, and F1-Score for AD Class

Algorithm / Model Precision (PPV) Recall (TP rate) F1-Score

LR 0.83 0.86 0.84

NB 0.86 0.72 0.79

KNN 0.81 0.78 0.79

MLP 0.78 0.82 0.8

SVM 0.79 0.83 0.81

DTs 0.73 0.72 0.73

RF 0.78 0.84 0.81

RF (fine-tuned) 0.78 0.93 0.85

XGBoost (fine-tuned) 0.71 1.00 0.83

LightGBM 0.7 0.97 0.81

CatBoost 0.74 1.00 0.85

ChefBoost 0.81 0.69 0.63

Table 3. Precision, Recall, and F1-Score for MCI Class

Algorithm / Model Precision (PPV) Recall (TP rate) F1-Score

LR 0.65 0.55 0.60

NB 0.33 0.56 0.41

KNN 0.20 0.04 0.07

MLP 0.70 0.63 0.67

SVM 0.74 0.49 0.59

DTs 0.30 0.30 0.30

RF 0.75 0.18 0.29

RF (fine-tuned) 1.00 0.12 0.21

XGBoost (fine-tuned) 0.40 0.18 0.25

LightGBM 0.40 0.18 0.25

CatBoost 0.50 0.18 0.27

ChefBoost 0.14 0.20 0.17

identify all actual cases of AD, emphasizing the 
reduction of false negatives, wherein individuals 
with Alzheimer’s are erroneously classified as non-
AD.

The MCI class had the smallest sample size within 
the dataset; however, it could be regarded as an 
intermediate class. Diagnosing MCI is a challenging 
task, even for specialist clinicians, and marks the 

onset of cognitive decline, as well as the increased 
risk of developing AD. There are 73 instances of 
MCI in the sample. Analysis of Table 3 revealed that 
the MCI classification exhibits lower performance 
compared to the AD classification. This was mainly 
due to the insufficient quantity of data. As illustrated 
in Table 3, the RF method exhibited the highest 
precision value for MCI classification.
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Table 4 illustrates the classification outcomes for 
the “Healthy” class. Healthy cases comprised 351 
instances within the sample. In this setting, analysis 
revealed that the healthy class attained better results 
in both statistical methods and more sophisticated 
ensemble learning models. The substantial volume 
of data was the primary explanation behind these 
outcomes. 

DISCUSSION
The first notable result of the study was that 
the performance of the CatBoost model after 
hyperparameter optimization was observed as the 
highest compared to the other models, considering 
the accuracy rate. This finding is consistent with 
existing literature, which shows that RF or XGBoost 
performed better in clinical assessment (21,22). 

The combined use of manual and AutoML-
based hyperparameter tuning (including Bayesian 
and evolutionary strategies) contributed to the 
model’s robustness and adaptability. This multi-
pronged optimization approach may be especially 
valuable for clinical datasets where fine-tuning 
directly impacts diagnostic reliability.

In particular, as in the problem at hand, overfitting 
becomes a major concern due to the often small, 
imbalanced, and noisy nature of health datasets. The 
regularization mechanisms of CatBoost, including 
depth control and learning rate optimization, 
mitigate this issue. Another factor contributing to 
CatBoost’s efficacy in the examined problem was 
the presence of missing values within the dataset, a 
common characteristic of health data. The CatBoost 
algorithm employs distinctive mechanisms to 
address missing values without necessitating 
imputation. It offers competitive performance 
relative to other algorithms with minimum 
hyperparameter tuning. In this sense, CatBoost’s 
ability to perform high-scoring classification can also 
be attributed to its robustness to outliers. Health-
related datasets can contain outliers that can affect 
model performance. Therefore, the robustness of 
CatBoost to outliers can be advantageous in these 
scenarios. CatBoost can effectively leverage multi-
core CPUs and GPUs for accelerated training, which 
is essential for managing extensive health datasets. 

The dataset exhibited class imbalance (AD: 176, 
MCI:73 HC: 351) among groups. To address this, 
class weights were adjusted during model training 

Table 4. Precision, Recall, and F1-Score for Healthy Subjects Class

Algorithm / Model Precision Recall (TP rate) F1-Score

LR 0.88 0.95 0.91

NB 0.91 0.85 0.88

KNN 0.80 0.95 0.87

MLP 0.86 0.93 0.89

SVM 0.92 0.95 0.93

DTs 0.84 0.85 0.85

RF 0.84 0.98 0.91

RF (fine-tuned) 0.87 0.97 0.91

XGBoost (fine-tuned) 0.96 0.89 0.92

LightGBM 0.96 0.90 0.93

CatBoost 0.96 0.93 0.94

ChefBoost 0.85 0.81 0.83
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to penalize misclassification of the minority class. In 
addition, model performance was evaluated using 
F1-Score which are more reliable in imbalanced 
classification problems. As a result, the CatBoost 
model was able to distinguish between healthy and 
AD class more efficiently.

RF method exhibited the highest precision value 
for MCI classification. The emphasis is on accurately 
identifying actual positive MCI cases. In other words, 
it assesses the model’s efficiency in differentiating 
between cases that genuinely have MCI and those 
that do not. A high precision score indicates that 
the model effectively identifies individuals with MCI 
while maintaining a low false positive rate. In medical 
practice, it is crucial to reduce the probability of 
misdiagnosing an individual with MCI when they are 
not affected, as this may result in unnecessary stress 
and redundant testing.

Accurate differentiation of the healthy cohort 
is critical for research and therapeutic trials. This 
enables researchers to enhance their comprehension 
of AD progression and the efficacy of prospective 
treatments. Moreover, the recognition of healthy 
people can aid in pinpointing potential risk factors 
for AD by concentrating on their cognitive health. 
This may facilitate a deeper comprehension of 
the disease’s etiology and possible prevention 
strategies. Consequently, the primary contribution 
of identifying healthy individuals would be to 
understand and, if necessary, redefine “healthy 
cognition” to uncover the deviations associated 
with AD.

While the developed model was able to 
differentiate the healthy and AD groups with high 
performance, it showed poorer performance in 
differentiating the MCI class from the healthy class. 
This result was also supported by another study (23). 
It was suggested that the reason for the relatively 
lower performance for the MCI class may be the 
smaller amount of data and, more importantly, the 
fact that the features defined for MCI but not for the 
other two classes (AD/HC) were not included in the 

dataset. At this point, the experiments conducted by 
increasing the number of data and the performance 
for the MCI class did not increase support this view.

Increasing the number of data, repeating the 
training process by feeding data to the model 
at certain intervals and examining the model 
performance, adding image data obtained as a 
result of brain imaging methods to the dataset, 
and combining different data types (such as using 
multimodal data) could increase the accuracy of the 
model.

Correlation analysis was performed to examine 
the relationships between key demographic 
and neuropsychological variables such as age, 
education, and test scores. Although these 
insights informed the understanding of feature 
interactions, explicit modeling of interaction effects 
was not implemented in the final CDSS model 
due to concerns related to model complexity 
and overfitting. Future studies could benefit 
from integrating feature interactions to enhance 
predictive accuracy and system interpretability.

When the study is considered within the scope of 
original value, the use of ML techniques (particularly, 
deep learning, ensemble learning, etc.) based on 
the purpose of the study can be made available to 
experts as a low-cost and non-invasive diagnostic 
tool. As far as examined, the literature contains no 
active decision support system.

In other words, it was observed that limited 
studies, especially studies using data based on 
neuropsychological and geriatric assessment, 
lacked the decision support part of deployment, 
especially when considered from the perspective 
of management information systems. In this sense, 
as the study suggested, an approach for automatic 
detection of Alzheimer’s type dementia with 
ML-based methods can contribute to literature 
considering the diagnosis, treatment, and cost of 
AD.

The developed CDSS was designed as a tool to 
assist the clinicians. In other words, AI technologies 
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are not expected to replace the physicians, but to 
improve the decision process within the framework 
of human-AI collaboration.

LIMITATIONS
The most significant limitation of this study is the 
absence of neuroimaging data, which may enhance 
diagnostic performance when combined with 
clinical and cognitive features. However, the dataset 
used in this research was ethically approved for the 
use of only structured non-imaging data, including 
clinical, demographic, neuropsychological and 
comprehensive geriatric assessment features. 
Future studies may benefit from incorporating 
multimodal data, including neuroimaging, to further 
improve the predictive power and generalizability 
of ML models in AD classification.

While the interaction between age, education, 
and MMSE scores was not explicitly modeled, a 
partial dependence analysis conducted during the 
development phase showed that age had a relatively 
limited marginal effect on model predictions. 
Nevertheless, it is widely acknowledged in the 
literature that age and education level significantly 
influence MMSE scores. 

Although interaction-based interpretability 
methods such as SHAP (SHapley Additive 
exPlanations) and PDP (Partial Dependence Plots) 
were not elaborated in this paper, they were 
explored in detail in a complementary study focused 
on the same dataset (24). Different XAI methods for 
comprehensive interaction analysis between these 
factors should be considered in future studies.

The application developed within the scope 
of the study can be characterized as context-
specific research; therefore, its generalizability is 
limited. The most important reason is modeling 
of the decision-making process of two specialist 
physicians as decision makers. It is believed that the 
more expert opinions are included in the decision-
making process, the higher the generalizability.

CONCLUSION
In this age with paramount data, the healthcare 
sector experiences a significant data revolution. 
In recent years, advancements in AI within 
healthcare have been accelerated by hardware and 
software solutions that enhance data collection. 
The healthcare ecosystem comprises several 
distinct stakeholders, including patients and their 
families, clinical care teams, public health program 
managers, hospital administrators, and researchers. 
Patients constitute a fundamental component of 
this ecosystem. They consistently produce data and 
transmit it to various applications.

The use of ML methods in the early diagnosis of 
neurodegenerative diseases like AD has attracted 
the attention of both researchers and clinicians. 
As a subfield of AI, ML methods can detect AD in 
advance. These approaches possess the capability 
to forecast MCI during the progression to AD. 

The study aimed to classify patients as healthy, 
having MCI, or diagnosed with AD through 
classification techniques. Given the group’s 
considerable heterogeneity and sensitivity to 
external influences, it is anticipated that employing 
ML to derive uniform outcomes from this data, 
particularly in forecasting the impact of these 
external factors on the results, will enhance the 
originality of the study.

The CDSS is positioned as an aid to expert 
clinicians. (25) supports this view by stating that 
AI can contribute to a more efficient and modern 
healthcare system by redesigning roles in the 
healthcare ecosystem, and human-in-the-loop 
highlights a collaborative partnership between AI 
and human expertise to optimize outcomes.

Given the proposed system will form an 
infrastructure for further research, the potential 
to facilitate the follow-up of individuals with AD is 
another advantage of the study. It is thought that 
the system proposed within the study can help 
detect the disease before it progresses, slow down 
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the course of the disease by focusing on modifiable 
risk factors in the early period, or apply existing 
treatment approaches.

In this context, the suggested and planned 
studies can be summarized as follows:

 - Especially in the context of AD, the datasets 
available in Türkiye are quite limited. Consid-
ering the cultural effects of the disease, stud-
ies should be carried out to create a dataset. 

 - Results with data from different hospitals 
should be compared.

 - Since the health status is dynamic and chang-
ing over time, especially when neurodegen-
erative diseases are considered, it is planned 
to obtain the data of the same patient at dif-
ferent time intervals to monitor the course of 
the disease more effectively.
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